\(\int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx\) [283]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\frac {a \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {a \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {2 a \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{d} \]

[Out]

a*arctan(sin(d*x+c)^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/d+a*arctanh(sin(d*x+c)^(1/2))*(e*csc(d*x+c))^
(1/2)*sin(d*x+c)^(1/2)/d-2*a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c
+1/4*Pi+1/2*d*x),2^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3963, 3957, 2917, 2644, 335, 218, 212, 209, 2720} \[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\frac {a \sqrt {\sin (c+d x)} \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)}}{d}+\frac {a \sqrt {\sin (c+d x)} \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)}}{d}+\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right ) \sqrt {e \csc (c+d x)}}{d} \]

[In]

Int[Sqrt[e*Csc[c + d*x]]*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTan[Sqrt[Sin[c + d*x]]]*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])/d + (a*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt
[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])/d + (2*a*Sqrt[e*Csc[c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c
 + d*x]])/d

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {a+a \sec (c+d x)}{\sqrt {\sin (c+d x)}} \, dx \\ & = -\left (\left (\sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {(-a-a \cos (c+d x)) \sec (c+d x)}{\sqrt {\sin (c+d x)}} \, dx\right ) \\ & = \left (a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx+\left (a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\sin (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{d}+\frac {\left (a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-x^2\right )} \, dx,x,\sin (c+d x)\right )}{d} \\ & = \frac {2 a \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{d}+\frac {\left (2 a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d} \\ & = \frac {2 a \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{d}+\frac {\left (a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d}+\frac {\left (a \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {\sin (c+d x)}\right )}{d} \\ & = \frac {a \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {a \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}{d}+\frac {2 a \sqrt {e \csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.92 \[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=-\frac {a \sqrt {e \csc (c+d x)} \left (2 \arctan \left (\sqrt {\csc (c+d x)}\right )+\log \left (1-\sqrt {\csc (c+d x)}\right )-\log \left (1+\sqrt {\csc (c+d x)}\right )+4 \sqrt {\csc (c+d x)} \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),2\right ) \sqrt {\sin (c+d x)}\right )}{2 d \sqrt {\csc (c+d x)}} \]

[In]

Integrate[Sqrt[e*Csc[c + d*x]]*(a + a*Sec[c + d*x]),x]

[Out]

-1/2*(a*Sqrt[e*Csc[c + d*x]]*(2*ArcTan[Sqrt[Csc[c + d*x]]] + Log[1 - Sqrt[Csc[c + d*x]]] - Log[1 + Sqrt[Csc[c
+ d*x]]] + 4*Sqrt[Csc[c + d*x]]*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]*Sqrt[Sin[c + d*x]]))/(d*Sqrt[Csc[c + d*x]]
)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 10.67 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.34

method result size
default \(\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) a \left (i \operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-\operatorname {EllipticPi}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {2}\, \sqrt {e \csc \left (d x +c \right )}\, \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}}{d}\) \(162\)
parts \(\frac {i a \left (\cos \left (d x +c \right )+1\right ) \sqrt {2}\, \sqrt {e \csc \left (d x +c \right )}\, \sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (i-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right )}{d}+\frac {a \sin \left (d x +c \right ) \left (\operatorname {arctanh}\left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )-\arctan \left (\sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \left (\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )\right ) \sqrt {e \csc \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}}\) \(243\)

[In]

int((a+a*sec(d*x+c))*(e*csc(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(1/2-1/2*I)*a/d*(I*EllipticPi((-I*(I-cot(d*x+c)+csc(d*x+c)))^(1/2),1/2+1/2*I,1/2*2^(1/2))-EllipticPi((-I*(I-co
t(d*x+c)+csc(d*x+c)))^(1/2),1/2-1/2*I,1/2*2^(1/2)))*(cos(d*x+c)+1)*2^(1/2)*(e*csc(d*x+c))^(1/2)*(-I*(I-cot(d*x
+c)+csc(d*x+c)))^(1/2)*(I*(-I-cot(d*x+c)+csc(d*x+c)))^(1/2)*(I*(-cot(d*x+c)+csc(d*x+c)))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.19 (sec) , antiderivative size = 538, normalized size of antiderivative = 4.45 \[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\left [-\frac {2 \, a \sqrt {-e} \arctan \left (-\frac {{\left (\cos \left (d x + c\right )^{2} - 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) + e\right )}}\right ) - a \sqrt {-e} \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} + 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} + {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {-e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} + 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 8 i \, a \sqrt {2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 8 i \, a \sqrt {-2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{8 \, d}, -\frac {2 \, a \sqrt {e} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} + 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}}}{4 \, {\left (e \sin \left (d x + c\right ) - e\right )}}\right ) - a \sqrt {e} \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} + 8 \, {\left (\cos \left (d x + c\right )^{4} - 9 \, \cos \left (d x + c\right )^{2} - {\left (7 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) + 8\right )} \sqrt {e} \sqrt {\frac {e}{\sin \left (d x + c\right )}} - 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 8 i \, a \sqrt {2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 8 i \, a \sqrt {-2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{8 \, d}\right ] \]

[In]

integrate((a+a*sec(d*x+c))*(e*csc(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(2*a*sqrt(-e)*arctan(-1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*sqrt(-e)*sqrt(e/sin(d*x + c))/(e*sin(d*x
 + c) + e)) - a*sqrt(-e)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 + 8*(cos(d*x + c)^4 - 9*cos(d*x + c)^2 +
(7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(-e)*sqrt(e/sin(d*x + c)) + 28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x +
 c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 8*I*a*sqrt(2*I*e)
*weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) - 8*I*a*sqrt(-2*I*e)*weierstrassPInverse(4, 0, cos(d
*x + c) - I*sin(d*x + c)))/d, -1/8*(2*a*sqrt(e)*arctan(1/4*(cos(d*x + c)^2 + 6*sin(d*x + c) - 2)*sqrt(e)*sqrt(
e/sin(d*x + c))/(e*sin(d*x + c) - e)) - a*sqrt(e)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 + 8*(cos(d*x + c
)^4 - 9*cos(d*x + c)^2 - (7*cos(d*x + c)^2 - 8)*sin(d*x + c) + 8)*sqrt(e)*sqrt(e/sin(d*x + c)) - 28*(e*cos(d*x
 + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) +
 8)) + 8*I*a*sqrt(2*I*e)*weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) - 8*I*a*sqrt(-2*I*e)*weierst
rassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)))/d]

Sympy [F]

\[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=a \left (\int \sqrt {e \csc {\left (c + d x \right )}}\, dx + \int \sqrt {e \csc {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))*(e*csc(d*x+c))**(1/2),x)

[Out]

a*(Integral(sqrt(e*csc(c + d*x)), x) + Integral(sqrt(e*csc(c + d*x))*sec(c + d*x), x))

Maxima [F]

\[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\int { \sqrt {e \csc \left (d x + c\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))*(e*csc(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*csc(d*x + c))*(a*sec(d*x + c) + a), x)

Giac [F]

\[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\int { \sqrt {e \csc \left (d x + c\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))*(e*csc(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*csc(d*x + c))*(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {e \csc (c+d x)} (a+a \sec (c+d x)) \, dx=\int \left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {e}{\sin \left (c+d\,x\right )}} \,d x \]

[In]

int((a + a/cos(c + d*x))*(e/sin(c + d*x))^(1/2),x)

[Out]

int((a + a/cos(c + d*x))*(e/sin(c + d*x))^(1/2), x)